
TECHNICAL NOTES AND SHORT PAPERS 

Matrix Assignments and an Associated Min Max 
Problem 

By T. A. Porsching 

1. Introduction. Consider an n X n matrix, A = (ai,) of positive real numbers, 
and let -F be the set of n! permutations of the numbers 1, 2, - - *, n. An assignment 
To is any set {alm(l) , a2O(2), ... , an*(n)} of n elements of A with 4 E (D. Furthermore, 
define the number u by the relation, 

,u= min max aij. 
1E4) a, iETp 

We are concerned with an algorithm for determining u which is more efficient 
than the obvious one of generating the n! possible assignments then straight- 
forwardly selecting u. A method for demonstrating an assignment containing ,u 
is also of concern, but such a method is easily evolved using the tools necessary 
to determine u. Before proceeding we define a nonzero column of a set of r rows of 
A as a column which contains at least one nonzero element. 

2. Determination of ,u. Note that if R is the set consisting of the minimum 
elements of the rows and columns of A, ,u > _ = maxaijER aij. This is clear if 
we remember that u is the maximum of some assignment which contains an element 
from every row and column of A. In particular, if aij is the element of this assign- 
ment taken from the ith row and jth column of A, u ? aij > ask where aik E R. 
The same is true of the jth column. Since this is true for i, j = 1, 2, * , n, >_ 'uO 
as asserted. With this in mind we construct an n X n matrix Ao* which has as its 
only nonzero elements the elements of R arranged as they were in A. If the aij 
are not all distinct, then all elements <,u? must also be inserted into Ao*. Thus, the 
matrix Ao* is simply the matrix A with all aij such that aij > /.o replaced by zeros. 

Now assume that it is possible to form an assignment from the nonzero elements 
of Ao*. If the maximum element of this assignment is v, then from the definition of 
,u, u _ v. But v ? u0o, so that u < v _ /uo < ,u. This implies that u = v = Mo; 
that is, u is the maximum element of Ao*. 

For the above conclusion it was necessary to assume that an assignment could 
be formed from the nonzero elements of Ao*. Suppose, on the other hand, that every 
assignment of Ao* contains at least one zero. Then clearly u > u > Uo, where j 
is the smallest element of A greater than 110. Now alter Ao* by inserting in Ao* 
the ul of A arranged as they were in A. This gives a new matrix Al*. The same 
reasoning used on Ao*, shows that if there is an assignment of Al* with no zero 
elements, then u = ,ul, the largest element of Al*. In general, it is clear that if 
Ai* is formed by the process of alteration described above, and if Ai* is the first 
such altered matrix which has an assignment containing no zero elements, then ,u 
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equals the maximum element of Ai*. Since /u always exists, such an A * will 
eventually be found. 

Clearly what is lacking in the above method is a relatively simple test on A 
to determine whether or not there exists an assignment of As* containing no zeros. 
Fortunately, such a test exists and is essentially described in the following theorem. 

THEOREM 1. Let A be an n X n matrix of real numbers. Let Sr be a set of r rows 
of A. Let k equal the number of nonzero columns in Sr. Then there exists an assignment 
of A containing no zeros if and only if r ? k for all Sr , r = 1, 2, * * *, n. 

We shall prove this theorem by appealing to a more general theorem of Hall on 
complete systems of distinct representatives (CDR) [1]. Suppose 

(1) F1,F2, ,.. IFm 

is a finite system of subsets of a given set S. A CDR of (1) is a set of m distinct 
elements of S: 

al , a2 , * I, am 

such that ai E Fi. Hall has proven: 
THEOREM 2. In order that a CDR of (1) shall exist, it is necessary and sufficient 

that for each k = 1, 2, , m any selection of k of the sets (1) shall contain between 
them at least k elements of S. 

We replace the nonzero elements of A by integers designating the column in 
which they lie and let S be the resulting set of distinct nonzero integers. With 
Fi as the set of nonzero integers belonging to the ith row of the new A, Theorem 1 
follows immediately from Theorem 2. 

In view of Theorem 1, the problem now becomes one of generating all of the 
sets Sr . This is solved by noting that A, the collection of all Sr , may be put in 
1 - 1 correspondence with the set P of 2' - 1 distinct, nonvoid com- 
binations of the numbers 1, 2,*-, n. The correspondence is the obvious 
one: {nl, n2,... I nr} E P <- rown, rown2 , ., rowr} E Z. The set F is ex- 
tremely easy to generate on a binary computer since its members correspond in an 
obvious manner to the binary representation of the numbers 1, 2, , 2, - 1. 

3. An Assignment fory. Let Ai* be the matrix which yielded a. Then Ai* 
possesses an assignment containg ju. Hence, there exists at least one u such that 
when the row and column containing this A are deleted from Ai*, the reduced 
matrix so obtained, A*eX, has an assignment containing no zero elements. The 
elements of this assignment are the n - 1 remaining elements of the desired as- 
signment. Any element of A* which does not appear in this assignment will not 
affect the result of Theorem 1 if set equal to zero. However, if Ai*, is known to have 
an assignment containing no zeros and the zeroing of a particular element of A*bX 
implies that the conditions of Theorem 1 do not hold for this matrix, then the zeroed 
element must be an element of any assignment of A*rX which contains no zeros. 
This gives rise to the following procedure. 

1. Sweep Ai* setting its nonzero elements equal to zero one at a time, applying 
Theorem 1 after each zeroing. The first time the conditions of the theorem do not 
hold, remember the row and column of the last element set equal to zero and delete 
them from Ai* to get A . 
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2. Repeat Step 1 on A* , A*, *1, .) If all remembering is done relative 
to A, then the rows and columns so remembered give the positions in A of n ele- 
ments which constitute the desired assignment. 

4. Conclusion. We conclude with a simple example illustrating the aspects of 
the preceding development. 

For a 4 X 4 matrix the sets Sr are listed in the following table along with their 
binary analogs. 

Decimal Binary SR Decimal Binary SR 
Number Equivalent Row Number Equivalent Row 

1 0001 1 9 1001 1, 4 
2 0010 2 10 1010 2, 4 
3 0011 1, 2 11 1011 1, 2, 4 
4 0100 3 12 1100 3, 4 
5 0101 1, 3 13 1101 1, 3, 4 
6 0110 2, 3 14 1110 2, 3, 4 
7 0111 1, 2, 3 15 1111 1, 2, 3, 4 
8 1000 4 

If 
1 9 4 9 all a12 a13 a14 

A 4 8 2 5 a21 a22 a23 a24 
= 7 3 7 1 = a31 a32 a33 a34 
4 6 3 6 a41 a42 a43 a44/ 

then 
1 0 0 0 

Ao*= ? 0 2 0. 
03 0 1 

0 0 3 0 

Since the theorem does not hold for S2 = {2, 4}, u > 3. Note that if an SI 
satisfies the condition of the theorem for Ai*, it will also satisfy this condition for 
A*+j, j > 0. Thus, it is necessary only to consider an Sr until some Ai* is found 
which meets the condition of the theorem. In the present example Ao* is altered 
to give, 

'1 0 4 0 

Al* = 4 ? 2 0, 
03 0 1' 

4 0 3 0 

and since {1, 2, 4} fails, u > 4. The alteration of A1* yields, 

I 0 4 0 a11 0 a13 0 

*2 4 0 2 5 a2l 0 a23 a24 
0 3 0 1 0 a32 0 a34), 
4 0 3 0 a4l 0 a43 0 

for which no S fails and hence u = 5. 
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The process for obtaining a To containing u is now applied to A2*. Step 1 of 
this process immediately gives one element of To as element a24 of A. Step 1 is 
completed by deleting row 2, column 4 from A2*. This leaves, 

1 0 4\ all 0 a13 

A2*1=| 3 0}= 0 a32 ? 
0 3 a4l 0 a43 

Element a4l of this matrix is now set equal to zero as indicated in Step 1. This new 
form of A*1 satisfies the theorem's hypothesis, so Step 1 is continued by setting a43 
equal to zero. The matrix A* now has the following appearance, 

1 04\ 
A*X= 0 3 0). 

Oo 0/ 

The hypothesis of the theorem fails for this matrix and so another element of 
To is a43. Deleting row 3 and column 3 from this last matrix leaves, 

A* (1 ?)(al O )* 

Step 1 is repeated on this matrix, and it is seen that To contains a32 and 
that A2*3 (1) = (a,,). From this it follows that the final element of TO is all 
Therefore, one possible assignment is To = { ail, a24, a32, a43}. 

As a final remark we note that with obvious simple modifications the algorithm 
developed here will also solve the analogous problem involving 

A = max mm aij. 
0E4' ajET 1, 

Bettis Atomic Power Laboratory 
Westinghouse Electric Corporation 
Pittsburgh, Pennsylvania 

Formulas for Integrals of Products of Associated 
Legendre or Laguerre Functions 

By James Miller 

1. Introduction. In this paper we derive, using a very simple technique, formulas 
for the integrals of products of Legendre functions, 

( 1 ) f PM (X)PI2 (X) P... Pr (x) dx, 
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